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Abstract Regarding the molecular shape, shapes’ similarity and shapes’ diversity
the paper presents (1) a new molecular descriptor, (2) using of the new descriptor
together with the previous Ultrafast Shape Recognition (USR) formula, (3) a quan-
titative method to verify the observance of the ‘QSAR axiom’, (4) a formula for
identification of the activity and shape ‘cliffs’, (5) a method to divide in classes any
group ofmolecules, (6) a criterion to identify the ‘atypical’molecules and (7) amethod,
based on Shannon entropy formula, for computation of the molecules’ diversity and
the similarity of two groups of molecules. The proposed formulas/procedures are
simple and suggestive. The algorithm which uses the proposed descriptor and USR
formula describes correctly enough the molecular similarity in three analyzed groups
of molecules.

Keywords Molecular shape · Molecular similarity · Shannon entropy · USR
method · QSAR axiom

1 Introduction

It is believed that 3D molecular shape is a valuable pattern for biological activity
because the shape is related to the electrostatic interactions between the lowmolecular
mass molecule (‘effector’) and active site of the target macromolecule (‘receptor’).
Accordingly, many studies emphasized the importance of shape, ‘electrical shape’
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(shape and atomic net charges) or shape description based on the electronic density
of molecules as indicator for molecular bio-activity [1–24].

Flexiblemolecules can adopt different shapes [25,26]. In fact, the ‘shape’ of effector
is the shape of the conformer having lowest potential energy. Searching and identifica-
tion of this conformer is called ‘geometry optimization’. The ‘false minimal energy’
conformers should be carefully avoided because the value ofmany descriptors depends
on geometry. After all, the correctness of obtained geometry depends on the correct-
ness of parameterization of used software for various atoms and chemical bonds.

The ‘effector’ interacts with the active site of the ‘receptor’ by a ‘key-lock’ mecha-
nism. The effector and active site are flexible, due to the presence of rotatable chemical
bonds. When the ‘key’ approaches the ‘lock’ the geometry of the two systems starts
to change gradually. The final shape’s complementarity of the two components of the
‘key-lock’ system is going to be the complementarity of two modified geometries.
An alternative approach is geometry optimisation of the effector molecule-active site
aggregate, if the initial geometry of the active site is known. Docking of the effector
molecule in the active site can be done using computer-generated structures [27–32].

As a rule, ‘similar structures have similar properties’. If the ‘properties’ are ‘bio-
chemical activities’ this statement is named ‘QSAR axiom’. Frequently, this ‘axiom’ is
challenged because some similar structures present non-similar values of activities and
some non-similar structures present similar values of activities. Despite this, available
databases, including a great number of lowmolecular mass molecules, are screened to
find compounds similar from the point of view of shape with a given molecule having
known biological activity. The goal of screening is finding a novel drug leads.

There are two classes of methods used in shapes’ similarity computations:

(a) superposition methods
(b) comparing the value of shape’s molecular descriptors

The methods in class (a) require previous alignment of the molecules. Then, one
computes the distances between atoms in 3D space. The precision of these methods
is high but the computation time is great.

Themethods in class (b) require previous calculation of the value of certain arguable
shape’s molecular descriptors. Then, one calculates the Manhattan or Euclidian dis-
tance of the values. The precision of these methods is lower but the computation time
is much smaller. This advantage is important if the screened database include quite
great number of molecules.

There are a huge number of molecular topological indices [33–38] which describe
the molecular shape and size. Calculated as mathematical functions of values in dis-
tance and/or adjacencymatrices these 2Dmolecular descriptors are useful in similarity
computations and QSAR (Quantitative Structure-Activity Relationship) studies.

A widely used method in class (b) is patented USR (Ultrafast Shape Recognition)
algorithm [39–43]. This method calculates three statistical functions (mean, standard
deviation and skewness) of atomic distances, called moments, related to four different
points in analyzed molecule (geometric center, the closest atom to geometric center,
the farthest atom to geometric center and the farthest atom to the farthest atom to
the geometric center). The shape similarity of two certain molecules depends on the
mean of Manhattan distances of the twelve µ computed moments. Actually, many
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moments of USR measure size (not shape) of molecules. Consequently, if the shape
is similar enough and the size is different enough, the USR shapes’ similarity is quite
underestimated. On the other hand USR method seems to be adequate to describe the
unevenness (rugosity) of molecular surface.

Regarding the mathematical definition of shape and shapes’ similarity the paper

• proposes a new molecular descriptor
• describes using of this descriptor together with USR formula
• proposes a quantitative method to verify the observance of ‘QSAR axiom’
• proposes a formula for identification of ‘activity cliffs’
• proposes a method to divide in classes the analyzed group of molecules
• propose a criterion to identify ‘atypical’ molecules
• describes a method for computation of molecules’ diversity
• propose a formula for calculation of similarity of two molecules groups

2 Methods and formulas

The virtual building of the molecules and the geometry optimization were done
using the molecular mechanics program PCModel [44]. A more rigorous geometry
optimization was subsequently performed by MOPAC software [45], semi-empirical
quantum-mechanics PM6 method included [46].

MOPAC computes the ‘molecular dimensions’ D1,D2 and D3 (D1 ≥ D2 ≥ D3)
of analyzed molecule. In computation of dimensions MOPAC disregards the atomic
diameters. Consequently, in 1D molecules, such as (halogenated) acetylene, D1 >>

D2 ∼ D3 ∼ 0, in 2D molecules, such as PAHs or C6HnX6−n halogenated benzene,
D1 ∼ D2 >> D3 ∼ 0 and in 3D almost spherical molecules, such as C60 fullerene,
D1 ∼ D2 ∼ D3 >> 0.

The proposed General Shape Index of analyzed molecule is the value of function
gsi, having value within [1, 3] range.

gsi = (1 · SIM1 + 2 · SIM2 + 3 · SIM3)/(SIM1 + SIM2 + SIM3) (1)

where

SIM1 = [1 − (1/3 · �R2
i1)

0.5]3
SIM2 = [1 − (1/3 · �R2

i2)
0.5]3

SIM3 = [1 − (1/3 · �R2
i3)

0.5]3
i = 1, 2, 3

R11 = (D2 + 1)/(D1 + 1)

R12 = R13 = R11 − 1

R21 = R22 = (D3 + 1)/(D1 + 1)

R23 = R21 − 1

R32 = (D3 + 1)/(D2 + 1)

R31 = R33 = R32 − 1
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Table 1 Three cases of the similarity SIMshape as SIMgsi

Case gsi1 gsi2 D2/D1 or D3/D2
in first molecule

D2/D1 or D3/D2 in
second molecule

Comments

#1 <1.47 Any Any Any At least one ∼1D
molecule

#2 >1.99 <2.01 >0.88 >0.88 Two ∼2D and
symmetrical
molecules

#3 >2.81 Any Any Any Two ∼3D molecules

The Rij ratios compare the dimensions. The factor +1 in ratios Rij allows using
of zero dimensions computed by MOPAC. The value of Rij is within [-1, 1] range.
The similarities SIM1, SIM2 and SIM3, having value within [0, 1] range, are the
similarities with ‘ideal’ 1D, 2D and 3D molecules. The value of gsi is weighted sum
of similarities SIM.

If gsi < 1.5 the shape of circumscribed ovoid is very elongated. If 1.7 < gsi < 2.2
the molecular shape is somehow planar. If gsi > 2.7 the shape of circumscribed ovoid
is almost spherical.

The similarity SIMgsi of two molecules is calculated by proposed formula (2),
where gsi1 ≤ gsi2 and the value of x factor is 4/3, empirically established.

SIMgsi = (gsi1/gsi2)
x (2)

We remind the similarity formula of USR algorithm [39].

SIMusr = 1/(1 + M) (3)

whereM ismean of theManhattan distances ofmoments,M = 1/12·�|µ1i−µ2i|, i =
1, . . ., 12

The similarity of shapes SIMshape of two molecules depends on similarity SIMgsi
and/or similarity SIMusr. Here, the similarity SIMshape = SIMgsi in cases in Table 1.
In other conditions SIMshape = SIMusr. The limit values 0.88, 1.47, 1.99, 2.01 and
2.81 in Table 1 are empirically established after analysis of many databases and tens
thousands different molecules pairs.

The value of SIMshape is within [0, 1] range.
If one analyzes a group of Nmolecules one calculates N(N-1)/2 values of SIMshape.

Therefore, the pairs of molecules having the maximum/minimum value of SIMshape
can be identified.

For each pair of molecules having known value of bio-activity, the similarity SIMact
of bio-activities Ai and A j is calculated by formula (4), where Amax and Amin are the
maximum and minimum value of bio-activity in analyzed group of molecules.

SIMact = 1 − |Ai − A j |/(Amax − Amin) (4)
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We propose here the Kendall rank correlation [47,48] of the values of SIMshape
and SIMact as quantitative measure of QSAR axiom’s observance. The value of this
statistical function is within [−1,+1] range.

We propose here the ratios (5) as signal of presence of activity and shape ‘cliffs’.

Cact = SIMshape/(1 + SIMact) (5a)

Cshape = SIMact/(1 + SIMshape) (5b)

The pairs of molecules having high value of Cact within [0, 1] range present a high
value of SIMshape vs. a low value of SIMact. The pairs of molecules having high value
of Cshape present a high value of SIMact vs. a low value of SIMshape. After all, the
presence of ‘cliffs’ having high value emphasizes the violation of QSAR axiom for
some molecules.

If the similarity is high enough (SIMshape ≥ k) the two analyzed molecules should
be considered ‘high similar’ or ‘in the same class’, from the point of view of shape.
We propose for k the value 0.9, empirically established.

TheNmolecules in analyzed group should be included in classes (types, categories)
called ‘shape clusters’, according to similarity. Each pair ofmolecules in certain cluster
fulfils the condition SIMshape ≥ k. Here, we propose a very intuitive clusterization
procedure including five steps.

Step #1 identification of the first ‘seed’, i.e. the object having minimum sum of sim-
ilarities �Sij with the other N− 1 objects; the first seed is included into first
class

Step #2 identification of the next ‘seeds’, i.e. objects having similarity (with each
seed) smaller than k and minimum sum of similarities �Sij (with the other
‘seeds’)
Each ‘seed’ is included into new class. After n times running of Step #2 there
are n+1 classes, each class includes 1 object, the number of ‘seeds’ becomes,
as a rule, zero and the number of non-classified objects is N − n − 1.

Step #3 identification of the object having maximum sum of similarities �Sij with
the objects included in classes

Step #4 identification of the class having features (a) and (b)
(a) all similarities of included objects with the object identified in Step #3 fulfil

the condition (2)
(b) greatestmean value of similarities of included objects with the object identified

in Step #3
The object identified in Step #3 is the most suitable to be classified. The class
identified in Step #4 is the most suitable to include the object identified in
Step #3. After N-n − 1 times running of Step #3 + Step #4 there are n + 1
classes also, each class includes few objects and number of the non-classified
objects becomes, as a rule, zero. However, sometimes, the last analyzed object
remains non-classified, because each class includes one or more object(s)
which have too low (i.e. smaller than k) similarity with the last object.

Step #5 the non-classified object, if it exist, becomes the last ‘seed’ of a new (last)
class
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After clusterization one calculates the entropy of the analyzed group of molecules,
from the point of view of molecular shapes, using the discontinuous formula of Shan-
non entropy [49], see formula (6). Here, we used the natural logarithm. The value of
entropy SE is within [0, Log (N)] range.

SE = −�pi · Log(pi) (6)

where i is number of clusters, pi = ni/N, ni is number of molecules in cluster i , N is
number of molecules in analyzed group.

If i = 1 (all molecules are very similar with all molecules) then SE = 0.
If number ni of molecules in cluster i is small, see proposed criterion (7), the

molecules in cluster i are considered ‘atypical (outliers) from the point of view of
shape’. These molecules are similar with a very small number of other molecules in
analyzed group.

ni < 0.5 · N1/2 (7)

The diversityDshape ofmolecules is weighted value of Shannon entropy, it is calculated
by formula (8) and his value is within [0, 1] range.

Dshape = SE/Log (N) (8)

Frequently, in QSAR studies, one uses two groups of molecules. The calibration
set includes molecules having known values of activity. The prediction set includes
new, not yet synthesized molecules, having unknown values of activity.

If the observance of QSAR axiom, from the point of view of shapes, is high, the
similarity of calibration and prediction sets from this point of view seems to be the
decisive factor for a correct estimation of activities of the molecules in prediction set
[50].

Here, the similarity SIM12 of two groups of molecules (each considered as a whole)
is calculated by proposed formula (9) and his value is within [0, 1] range.

SIM12 = R1 · R2 (9)

where

If SE1 ≤ SE12 then R1 = (0.1+SE1)/(0.1+SE12) else R1 = (0.1+SE12)/(0.1+
SE1)

If SE2 ≤ SE12 then R2 = (0.1+SE2)/(0.1+SE12) else R2 = (0.1+SE12)/(0.1+
SE2)

SE1 is Shannon entropy of group #1
SE2 is Shannon entropy of group #2
SE12 is Shannon entropy of aggregate group #1 + group #2

The factor 0.1 allows using of zero values of entropies SE. The formula (9) is a
simplified version of previously proposed formulas [50,51].
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3 Results and discussion

General Shape Index describes only the general shape of circumscribed ovoid, not
other complex features of molecular shape as ruggedness of molecular surface or
local shape of certain fragments in analyzed molecule. This descriptor is not viewed
as a substitute of other shape descriptors and it is used here to increase the precision
of USR method in computation of molecular similarity.

The molecules in Table 2, having high diversity of shapes, were analyzed to empha-
size the difference between USR method and algorithm proposed here.

Table 3 includes, for comparison, the value of gsi and some usual topological
indices, i.e. Randic (R) [52], Wiener (W) [53] and Balaban (J) [54], calculated for
molecules in Table 2.

The Pearson square linear correlations of gsi with Randic index R in Table 3 (r2 =
0.0092), with Wiener index W (r2 = 0.0028) and with Balaban index J (r2 = 0.0036)
are very low. Therefore, as was to be expected, gsi and topological indices R, W and
J describe different aspects of shape.

We remind that the topological indices describe the molecular shape and size. To
decrease effect of size, Table 4 includes the value of the same topological indices
referred to the number g of heavy atoms (different from hydrogen).

The correlations of gsiwith ratios R/g in Table 4 (r2 = 0.1943), W/g (r2 = 0.0509)
and J/g (r2 = 0.1773) are higher than correlations with topological indices in Table 3.

According to USR method there are no pairs in Table 2 which fulfill the condition
SIMusr ≥ 0.9. The maximum similarity of molecules is computed for pair 12–13,
SIMusr = 0.8767.Consequently, the number of clusters is 32, each cluster includes one
molecule, all molecules are ‘atypical’ (outliers) and the diversity Dshape of molecules
has maximum value 1.

For molecules which are, intuitively, similar enough from the point of view of
shape but different enough from the point of view of size USR method computes
very low similarities. For instance, for pair 27–28 SIMusr = 0.4634, for pair 15–24
SIMusr = 0.3862, for pair 17–19 SIMusr = 0.2898, for pair 22–23 SIMusr = 0.2275
and for pair 10–32 SIMusr = 0.1040. In these pairs the values of gsi are very close.

In pairs n-alkane-32 the pair 8–32 possess the highest similarity, SIMusr = 0.7825,
because of similarity of sizes.

In pairs any–29 the pair 15–29 possess the highest similarity, SIMusr = 0.8116,
although 15 is a 2D molecule and 29 is a 3D molecule.

Accordingly, the USR method alone is not suitable for description of shape simi-
larity of molecules in Table 2.

Using proposed algorithm we obtained very different results. Many molecules are
included in the same cluster because SIMshape ≥ 0.9.

The maximum similarity of molecules in Table 2 is computed for pair 11–24,
SIMshape = 0.9997.

The number of clusters is 17 and the diversity Dshape of molecules in Table 2 is
lower, Dshape = 0.7151.

Nine polyhedral 3D molecules 1–4, 25–29 are included in the same cluster. Five
2D molecules 11–14, 24 are included in the same cluster. Elongated 3D molecules 9,
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Table 2 The structure of
analyzed molecules

Index Type Structure

1 Methane derivatives CX4 X = F

2 X = Cl

3 X = Br

4 X = I

5 n-Alkans CH3(CH2)nCH3 n = 1

6 n = 2

7 n = 4

8 n = 7

9 n = 11

10 n = 16

11 Benzene derivatives C6X6 X = F

12 X = Cl

13 X = Br

14 X = I

15 X = H

16
c

Linear PAHs c = 2

17
c

Linear PAHs c = 3

18 c = 4

19 c = 5

20
c

Polyphenylenes c = 2

21 c = 3

22 c = 4

23 c = 5

24 Miscellanea Coronnene

25 Adamantane

26 Twistane

27 C20 fullerene

28 C60 fullerene

29 Cubane

30 1,3,5-triiodo-benzene

31 1,4-dibutyl-benzene

32 1,6-dibromo-acetylene

10, 23 are included in the same cluster. Surprisingly, the maximum similarity in group
15–19 is low, SIMshape = 0.5495 for pair 15–16.

There are 15 ‘atypical’ molecules. For instance, in pairs any–30 the maximum
similarity is SIMshape = 0.7890 (for pair 14–30) and so, the molecule 30 is one of
‘atypical’ molecules in analyzed group.
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Table 3 The value of gsi and
topological indices

Index in Table 2 gsi R W J

1 2.89 2.00 16 3.02

2 2.87 2.00 16 3.02

3 2.87 2.00 16 3.02

4 2.86 2.00 16 3.02

5 2.68 1.41 4 1.63

6 2.34 1.91 10 1.98

7 1.74 2.91 35 2.34

8 1.32 4.41 120 2.60

9 1.17 6.41 364 2.76

10 1.12 8.91 969 2.86

11 2.01 5.46 174 2.76

12 2.00 5.46 174 2.76

13 2.00 5.46 174 2.76

14 2.00 5.46 174 2.76

15 2.01 3.00 27 2.00

16 1.98 4.97 109 1.93

17 1.94 6.93 279 1.68

18 1.89 8.90 569 1.47

19 1.84 10.87 1011 1.29

20 1.95 5.97 198 1.80

21 1.47 8.93 657 1.45

22 1.29 11.90 1548 1.19

23 1.20 14.87 3015 1.01

24 2.01 11.90 1002 1.41

25 2.98 4.90 96 1.90

26 2.87 4.93 95 1.94

27 2.95 10.00 500 1.50

28 2.98 30.00 8340 0.91

29 2.92 4.00 48 2.00

30 2.02 4.18 84 2.34

31 1.54 6.86 367 2.05

32 1.06 3.91 84 2.53

To present applicability of formulas (4)–(9) we analyzed the phenol derivatives in
Table 5. The toxicity (T = Log (1/LD50) of these molecules against Tetrahymena
pyriformis protozoan is quoted in literature [55,56].

From the point of view of gsi value, a large majority of molecules in Table 5 are
very similar 2D molecules. Accordingly, the gsi molecular descriptor alone is not
suitable for description of shape similarity. Using proposed algorithm we obtained
next presented results.

There is only one pair ofmolecules having very high similarity i.e. SIMshape ≥ 0.98,
more precisely, 41 and 44, SIMshape = 0.9966.
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Table 4 The value of gsi and
topological indices/g ratio

Index in Table 2 gsi R/g W/g J/g

1 2.89 0.40 3.20 0.61

2 2.87 0.40 3.20 0.61

3 2.87 0.40 3.20 0.61

4 2.86 0.40 3.20 0.61

5 2.68 0.47 1.33 0.54

6 2.34 0.48 2.50 0.49

7 1.74 0.49 5.83 0.39

8 1.32 0.49 13.33 0.29

9 1.17 0.49 28.00 0.21

10 1.12 0.50 53.83 0.16

11 2.01 0.46 14.50 0.23

12 2.00 0.46 14.50 0.23

13 2.00 0.46 14.50 0.23

14 2.00 0.46 14.50 0.23

15 2.01 0.50 4.50 0.33

16 1.98 0.50 10.90 0.19

17 1.94 0.50 19.93 0.12

18 1.89 0.49 31.61 0.08

19 1.84 0.49 45.96 0.06

20 1.95 0.50 16.50 0.15

21 1.47 0.50 36.50 0.08

22 1.29 0.50 64.50 0.05

23 1.20 0.50 100.50 0.03

24 2.01 0.50 41.75 0.06

25 2.98 0.49 9.60 0.19

26 2.87 0.49 9.50 0.19

27 2.95 0.50 25.00 0.08

28 2.98 0.50 139.00 0.02

29 2.92 0.50 6.00 0.25

30 2.02 0.47 9.33 0.26

31 1.54 0.49 26.21 0.15

32 1.06 0.49 10.50 0.32

The molecules 1 and 48 present lowest similarity SIMshape = 0.2904.
The observance of the QSAR axiom is 0.1776.
The molecules’ pair 16–41 presents maximum Toxicity cliff, i.e. highest shape

similarity / Toxicity similarity ratio, SIMshape = 0.8202,SIMtox = 0.2074,Ctox =
0.6793. Themolecules’ pair 44–48 presents maximum shape cliff, i.e. highest Toxicity
similarity / shape similarity ratio, SIMshape = 0.3593,SIMtox = 0.9951,Cshape =
0.7321.

The number of shape clusters is 35 and 46 molecules are ‘atypical’. There is only
one cluster, i.e. (26, 28, 30, 35), including four non-atypical molecules. In addition,
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Table 5 The structure and gsi
value of analyzed phenol
derivatives

No. Substituent(s) T gsi

1 None −0.431 1.997

2 2,6-difluoro 0.396 2.001

3 2-fluoro 0.248 2.002

4 4-fluoro 0.017 1.990

5 3-fluoro 0.473 1.997

6 4-methyl −0.192 2.083

7 3-methyl −0.062 2.153

8 2-chloro 0.277 2.012

9 2-bromo 0.504 2.013

10 4-chloro 0.545 1.975

11 3-ethyl 0.229 2.199

12 2-ethyl 0.176 2.325

13 4-bromo 0.681 1.968

14 2,3-dimethyl 0.122 2.207

15 2,4-dimethyl 0.128 2.117

16 2,5-dimethyl 0.009 2.105

17 3,4-dimethyl 0.122 2.174

18 3,5-dimethyl 0.113 2.177

19 3-chloro-4-fluoro 0.842 1.994

20 2-chloro-5-methyl 0.640 2.155

21 4-iodo 0.854 1.960

22 3-iodo 1.118 1.991

23 2-iso-propyl 0.803 2.634

24 3-iso-propyl 0.609 2.523

25 4-iso-propyl 0.473 2.293

26 2,5-dichloro 1.128 2.003

27 2,3-dichloro 1.271 2.015

28 2-methyl-4-chloro 0.700 2.185

29 3-methyl-4-chloro 0.795 2.155

30 2,4-dichloro 1.036 1.995

31 3-tert-butyl 0.730 2.524

32 4-tert-butyl 0.913 2.300

33 3,5-dichloro 1.562 2.016

34 2-phenyl 1.094 2.030

35 2,4-dibromo 1.403 1.996

36 2,3,6-trimethyl 0.418 2.575

37 3,4,5-trimethyl 0.930 2.332

38 2,4,6-trimethyl 1.695 2.485

39 3,5-dimethyl-4-chloro 1.203 2.162

40 2,6-dichloro-4-bromo 1.779 1.994

41 2,4,6-trichloro 2.100 2.008

42 2-methyl-4-bromo-6-chloro 1.277 2.168
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Table 5 continued
No. Substituent(s) T gsi

43 2,6-dimethyl-4-bromo 1.278 2.582

44 2,4,6-tribromo 2.050 2.003

45 2-tert-butyl-4-methyl 1.297 2.532

46 2-iso-propyl-4-chloro-5-methyl 1.862 2.509

47 2,4-dimethyl-6-tert-butyl 1.245 2.587

48 2,6-diphenyl 2.113 2.087

49 2,4-dibromo-6-phenyl 2.207 2.257

50 2,6-di-tert-butyl-4-methyl 1.788 2.392

there are only three clusters, i.e. (40, 42, 43), (15, 16, 20) and (17, 19, 29), including
three molecules. Consequently, the diversity of molecules is high, Dshape = 0.8816.

The significance of similarity’s value in formula (9) should be high because the
observance of QSAR axiom for molecules in Table 5 is high enough. To verify this
assumption we arranged the molecules according to value of toxicity T and then we
made two tests.

In first test the Group #1 includes the 25 molecules having ranks 1, 2, 3, …, 25, i.e.
the molecules having lowest value of T and Group #2 include the 25 molecules having
highest value of T. The similarity of toxicities is, intuitively, low, because the average
toxicity in each group is very different. The shape similarity of these two groups (each
considered as a whole) is SIM12 = 0.6848.

In second test the Group #1 includes the 25 molecules having ranks 1, 3, 5, …, 49
and Group #2 includes the 25 molecules having ranks 2, 4, 8, …, 50. The similarity
of toxicities is, intuitively, high, because the average toxicity in each group is similar.
The similarity of these two groups was SIM12 = 0.8024.

Indeed, for molecules in Table 5, the similarity of toxicities is correlated with the
similarity of shapes and the computed value 0.1776 of QSAR axiom’s observance
seems to be ‘significant’.

The same two tests weremade for N-methyl-phenyl urethanes CH3NHCOO-C6Hn-
Z5−n in Table 6, which are insecticides having toxicity quoted in literature [57–59].
The value of observance is much lower, −0.0012. The value of similarity of groups
in first test SIM12 = 0.7499 is much closer to similarity of groups in second test,
SIM12 = 0.7810.

In Table 6 the molecules 32 and 67 present lowest similarity SIMshape = 0.2988.
The molecules’ pair (35, 58) presents maximum toxicity cliff Ctox = 0.72. The

molecules’ pair (27, 67) presents maximum shape cliff Cshape = 0.76.
The number of clusters is 52. There is only one cluster, i.e. (9–12, 25), including five

non-atypical molecules. Consequently, the diversity of molecules is high, Dshape =
0.8875.

All computations are made by PRECLAV software [50,60,61] and a 3200 MHz
Pentium4 computer. Input file in calculation of USR moments was MOPAC output
file. Input table in similarity calculations included the values of USR moments and
MOPAC dimensions. The computation time for the values of SIMshape for molecules
in Tables 5 and 6 was ∼1100 values/s.
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Table 6 The structure of
analyzed urethanes

No. Substituent(s) Z T

1 3,5-di-iso-propyl 7.48

2 3-methyl 4.85

3 3-iso-propyl 6.47

4 3-tert-butyl 6.40

5 3,5-di-methyl 5.22

6 3-methyl-5-iso-propyl 7.25

7 2-methyl-5-iso-propyl 5.70

8 2-O-iso-propyl 6.17

9 2-fluoro 4.80

10 2-chloro 5.30

11 2-bromo 5.66

12 2-iodo 6.10

13 4-chloro 3.62

14 3-N(methyl)2 5.10

15 3,5-di-methyl-4-S-methyl 5.92

16 4-N(methyl)2 3.62

17 3-N(methyl)2-5-iso-propyl 6.72

18 3-iso-propyl-4-N(methyl)2 6.82

19 3,5-di-N(methyl)2 5.59

20 3-iso-propyl-4-N(methyl)2-6-methyl 6.41

21 2-iso-propyl-4-N(methyl)2-5-methyl 5.89

22 3-S-methyl 5.16

23 4-S-methyl 4.47

24 None 3.70

25 2-methyl 3.85

26 4-methyl 4.00

27 2-ethyl 4.89

28 3-ethyl 5.32

29 4-ethyl 4.42

30 2-iso-propyl 5.22

31 4-iso-propyl 4.16

32 2-tert-butyl 5.22

33 4-tert-butyl 5.82

34 2-sec-butyl 5.96

35 3-sec-butyl 6.80

36 4-sec-butyl 5.75

37 3-sec-amyl 6.96

38 2-cyclopentyl 5.96

39 3-cyclopentyl 5.82

40 4-cyclopentyl 4.57

41 2-propyl 5.27

42 2-iso-butyl 5.64
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Table 6 continued
No. Substituent(s) Z T

43 3-fluoro 4.07

44 4-fluoro 3.64

45 3-chloro 4.30

46 3-bromo 4.89

47 4-bromo 4.00

48 3-iodo 5.16

49 4-iodo 4.06

50 2,3-di-chloro 4.32

51 2,4-di-chloro 4.85

52 2,5-di-chloro 4.30

53 2,6-di-chloro 2.89

54 3,4-di-chloro 4.72

55 3,5-di-chloro 4.92

56 2-nitro 2.30

57 3-nitro 2.70

58 4-nitro 2.52

59 2-nitro-3-methyl 3.70

60 2-nitro-4-methyl 3.89

61 2-nitro-5-methyl 4.80

62 3-nitro-4-methyl 3.50

63 2-S-hexyl 5.40

64 3-ethyl-4-nitro 3.70

65 3-iso-propyl -4-nitro 5.55

66 4-S-ethyl 4.25

67 4-S-propyl 4.92

68 4-S-iso-propyl 5.05

69 4-S-butyl 5.43

70 2-cyclohexyl 5.85

71 3-cyclohexyl 5.70

72 4-cyclohexyl 5.05

73 3-iso-propyl-4-S-methyl 7.00

74 3-iso-propyl-6-S-methyl 6.75

75 2-S-allyl 5.44

76 4-S-allyl 5.07

4 Conclusions

The proposed shape descriptor gsi (General Shape Index) is simple and suggestive.
The USR formula and gsi descriptor alone cannot describe correct enough the

molecular similarity. The algorithm which uses the gsi descriptor and USR formula
describe correctly enough the molecular similarity.
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The proposed method to verify the observance of ‘QSAR axiom’ is simple and
suggestive.

The proposed formula to identify the activity and shape ‘cliffs’ is simple and sug-
gestive.

The steps in clusterization procedure are intuitive and the computation time is short.
The proposed criterion to identify ‘atypical’ molecules is simple and suggestive.
After clusterization, the Shannon entropy formula seems to be most suitable to

calculate diversity of molecules and the similarity of two groups of molecules.
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